

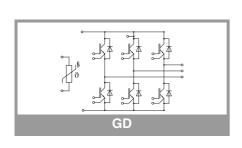
SEMiX® 5

Trench IGBT Modules

Evaluation Sample SEMiX155GD12T4

Target Data

Features


- Solderless assembling solution with PressFIT signal pins and screw power terminals
- IGBT 4 Trench Gate Technology
- V_{CE(sat)} with positive temperature coefficient
- Low inductance case
- Reliable mechanical design with injection moulded terminals and reliable internal connections
- UL recognized file no. E63532
- NTC temperature sensor inside

Typical Applications*

- · AC inverter drives
- UPS
- Electronic Welding

Remarks

- Product reliability results are valid for $T_{\text{jop}}{=}150^{\circ}\text{C}$
- · Dynamic data are estimated
- For storage and case temperature with TIM see document "TP(HALA P8) SEMiX 5p"

Absolute Maximum Ratings							
Symbol	Conditions		Values	Unit			
IGBT	•		'				
V _{CES}	T _j = 25 °C		1200	V			
I _C	T _j = 175 °C	T _c = 25 °C	219	Α			
		T _c = 80 °C	169	А			
I _{Cnom}			150	Α			
I _{CRM}	$I_{CRM} = 3xI_{Cnom}$		450	Α			
V_{GES}			-20 20	V			
t _{psc}	$V_{CC} = 800 \text{ V}$ $V_{GE} \le 20 \text{ V}$ $V_{CES} \le 1200 \text{ V}$	T _j = 150 °C	10	μs			
T _j			-40 175	°C			
Inverse d	iode						
V_{RRM}	T _j = 25 °C		1200	V			
I _F	T _i = 175 °C	T _c = 25 °C	175	А			
	71,-175 0	T _c = 80 °C	131	Α			
I _{Fnom}			150	Α			
I _{FRM}	I _{FRM} = 2xI _{Fnom}		300	Α			
I _{FSM}	t _p = 10 ms, sin 180°, T _j = 25 °C		900	Α			
Tj			-40 175	°C			
Module							
I _{t(RMS)}			280	Α			
T _{stg}	module without TIM		-40 125	°C			
V _{isol}	AC sinus 50Hz, t = 1 min		4000	V			

Characteristics							
Symbol	Conditions		min.	typ.	max.	Unit	
IGBT							
$V_{\text{CE(sat)}}$	I _C = 150 A	T _j = 25 °C		1.80	2.05	V	
	V _{GE} = 15 V chiplevel	T _j = 150 °C		2.20	2.40	V	
V _{CE0}	chiplevel	T _j = 25 °C		0.80	0.90	V	
		T _j = 150 °C		0.70	0.80	V	
	V _{GE} = 15 V	T _j = 25 °C		6.7	7.7	mΩ	
	chiplevel	T _j = 150 °C		10.0	11	mΩ	
$V_{GE(th)}$	$V_{GE}=V_{CE}$, $I_{C}=6$ mA		5	5.8	6.5	V	
I _{CES}	$V_{GE} = 0 \text{ V}, V_{CE} = 12$	00 V, T _j = 25 °C			2.0	mA	
C _{ies}	V 05.V	f = 1 MHz		9.3		nF	
Coes	V _{CE} = 25 V V _{GE} = 0 V	f = 1 MHz		0.58		nF	
C _{res}		f = 1 MHz		0.51		nF	
Q_G	V _{GE} = - 15 V+ 15 V			850		nC	
R _{Gint}	T _j = 25 °C			5.0		Ω	
t _{d(on)}	di/dt _{on} = 3300 A/μs	T _j = 150 °C		t.b.d.		ns	
t _r		T _j = 150 °C		t.b.d.		ns	
E _{on}		T _j = 150 °C		13		mJ	
t _{d(off)}		T _j = 150 °C		t.b.d.		ns	
t _f		T _j = 150 °C		t.b.d.		ns	
E _{off}	di/dt _{off} = 1000 A/μs	T _j = 150 °C		21		mJ	
R _{th(j-c)}	per IGBT				0.21	K/W	
R _{th(c-s)}	per IGBT (λgrease=0.81 W/mK, thickness 50-100μm)			t.b.d.		K/W	
R _{th(c-s)}	per IGBT (λ=3.4 W/mK)			t.b.d.		K/W	

SEMiX® 5

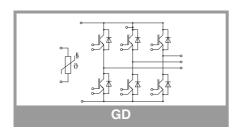
Trench IGBT Modules

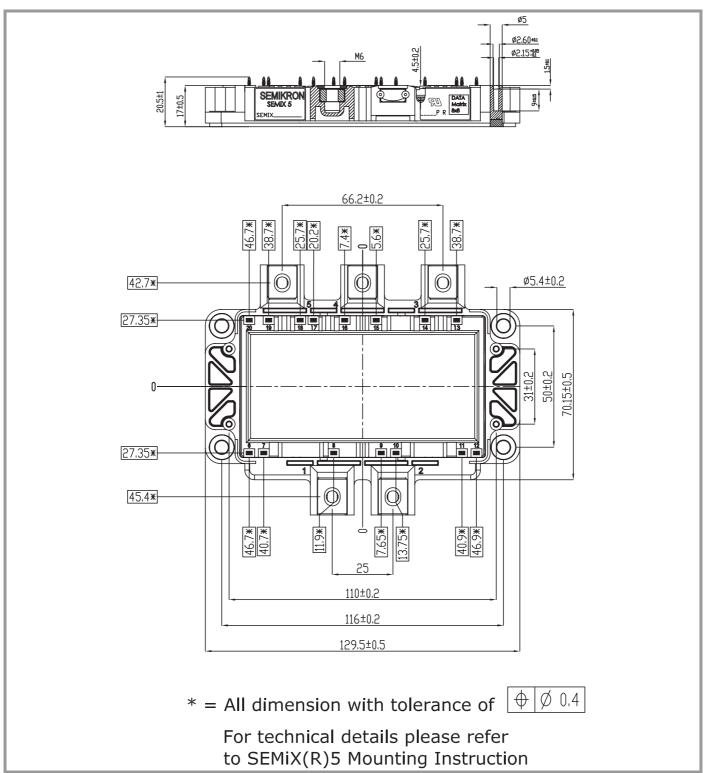
Evaluation Sample SEMiX155GD12T4

Target Data

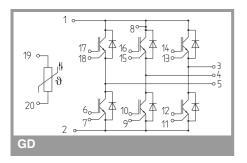
Features

- Solderless assembling solution with PressFIT signal pins and screw power terminals
- IGBT 4 Trench Gate Technology
- V_{CE(sat)} with positive temperature coefficient
- Low inductance case
- Reliable mechanical design with injection moulded terminals and reliable internal connections
- UL recognized file no. E63532
- NTC temperature sensor inside


Typical Applications*


- · AC inverter drives
- UPS
- Electronic Welding

Remarks


- Product reliability results are valid for $T_{\text{jop}}{=}150^{\circ}\text{C}$
- · Dynamic data are estimated
- For storage and case temperature with TIM see document "TP(HALA P8) SEMiX 5p"

Characte	ristics					
Symbol	Conditions		min.	typ.	max.	Unit
Inverse d	iode					•
$V_F = V_{EC}$	I _F = 150 A	T _j = 25 °C		2.14	2.46	V
	V _{GE} = 0 V chiplevel	T _j = 150 °C		2.07	2.38	V
V_{F0}	chiplevel	T _j = 25 °C		1.30	1.50	V
		T _j = 150 °C		0.90	1.10	V
r _F	chiplevel	T _j = 25 °C		5.6	6.4	$m\Omega$
		T _j = 150 °C		7.8	8.5	mΩ
I _{RRM}	I _F = 150 A	T _j = 150 °C		-		Α
Q _{rr}	di/dt _{off} = 3300 A/μs V _{GE} = -15 V	T _j = 150 °C		-		μC
E _{rr}	V _{GE} = -13 V V _{CC} = 600 V	T _j = 150 °C		14		mJ
R _{th(j-c)}	per diode				0.35	K/W
R _{th(c-s)}	per diode (λgrease=0.81 W/mK, thickness 50-100μm)			t.b.d.		K/W
R _{th(c-s)}	per diode (λ=3.4 W/mK)			t.b.d.		K/W
Module	•					•
L _{CE}				20		nΗ
R _{CC'+EE'}	measured per	T _C = 25 °C		1.2		mΩ
	switch	T _C = 125 °C		1.65		mΩ
Rth _{(c-s)1}	calculated without thermal coupling			t.b.d.		K/W
Rth _{(c-s)2}	including thermal coupling, Ts underneath module $(\lambda_{grease}=0.81 \text{ W/} (\text{m}^{\star}\text{K}))$			t.b.d.		K/W
Rth _{(c-s)2}	including thermal coupling, Ts underneath module, pre-applied phase change material			t.b.d.		K/W
Ms	to heat sink (M5)		3		6	Nm
Mt		to terminals (M6)	3		6	Nm
]					Nm
W				398		g
Temperat	ure Sensor					_
R ₁₀₀	T _c =100°C (R ₂₅ =5 kΩ)			493 ± 5%		Ω
B _{100/125}	$R_{(T)}=R_{100}exp[B_{100/125}(1/T-1/T_{100})];T[K];$			3550 ±2%		К

SEMiX5p

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, chapter IX.

*IMPORTANT INFORMATION AND WARNINGS

The specifications of SEMIKRON products may not be considered as guarantee or assurance of product characteristics ("Beschaffenheitsgarantie"). The specifications of SEMIKRON products describe only the usual characteristics of products to be expected in typical applications, which may still vary depending on the specific application. Therefore, products must be tested for the respective application in advance. Application adjustments may be necessary. The user of SEMIKRON products is responsible for the safety of their applications embedding SEMIKRON products and must take adequate safety measures to prevent the applications from causing a physical injury, fire or other problem if any of SEMIKRON products become faulty. The user is responsible to make sure that the application design is compliant with all applicable laws, regulations, norms and standards. Except as otherwise explicitly approved by SEMIKRON in a written document signed by authorized representatives of SEMIKRON, SEMIKRON products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury. No representation or warranty is given and no liability is assumed with respect to the accuracy, completeness and/or use of any information herein, including without limitation, warranties of non-infringement of intellectual property rights of any third party. SEMIKRON does not assume any liability arising out of the applications or use of any product; neither does it convey any license under its patent rights, copyrights, trade secrets or other intellectual property rights, nor the rights of others. SEMIKRON makes no representation or warranty of non-infringement or alleged non-infringement of intellectual property rights of any third party which may arise from applications. Due to technical requirements our products may contain dangerous substances. For information on the types in question please contact the nearest SEMIKRON sales office. This document supersedes and replaces all information previously supplied and may be superseded by updates. SEMIKRON reserves the right to make changes.

In accordance with the quality guidelines of SEMIKRON, we would like to point out that the products are evaluation samples. These evaluation samples are not produced under quality conditions approaching those of series production, and are at the present time not included in the SEMIKRON quality monitoring and control process. Neither the product nor the production process has to date gone through the SEMIKRON internal authorization procedure. The evaluation samples may differ from the final series product in terms of their performance, applicability and specification. SEMIKRON may make any amendments without any prior notification. SEMIKRON cannot and shall not promise or commit itself to release and/or make available a final version or series product after the development phase. Evaluation samples may only be used in line with their functionality and performance for function tests in the context of developments. Evaluation samples are not released for use in serial products.

IMPORTANT: Evaluation samples must be commissioned and operated by qualified persons only. The user is responsible to use and operate evaluation samples only in full accordance with all applicable regulations and standards, especially, but not limited to safety standards, accident prevention and environmental regulations. We explicitly recommend to follow the applicable local implementation of EN50191. If and when the customer sells evaluation samples to any third party the customer must inform the third party in advance of all notes, warnings, reservations and obligations provided and imposed by SEMIKRON. SEMIKRON cannot and will not assume any responsibility with regard to freedom from defects, functionality, and adaptation to and interaction with possible applications of the user or with regard to any other potential risks resulting from use of evaluation samples. Therefore SEMIKRON explicitly excludes any warranty and liability; as far as legally possible. The customer shall fully indemnify and hold harmless SEMIKRON from any and all risks, damages, losses, expenses and costs directly or indirectly resulting out of or in connection with the commissioning, operation, system integration, sale, dissemination or any other kind of use of evaluation samples by the customer and/or any third party, which has come into possession of evaluation samples through or because of the customer. All know-how and all registerable and non-registerable copyrights and industrial property rights arising from or in connection with these evaluation samples remain the exclusive property of SEMIKRON.

4 Rev. 0.2 − 10.03.2017 © by SEMIKRON